

ICE

OCTOBER 5TH – 7TH, 2020 THE AACHEN COLLOQUIUM SUSTAINABLE MOBILITY

- 2-Stage turbocharging offers possibility of lean air fuel ratio even at higher load points
- Engineering targets
 - Brake mean effective pressure ~ 20 bar
 - Effective engine efficiency > 42%
- Variation of
 - compression ratios
 - turbulence level
 - spark plug layout
 - to evaluate effect on engine efficiency and peak firing pressure for different air fuel rations

Hydrogen offers wide range of possible combustion system layouts in combination with different aftertreatment systems

HYDROGEN COMBUSTION ENGINES CAN BE EITHER WAY BASED ON DIESEL AND GASOLINE ENGINES

Base engine		Vehicle class	Engine size	Combustion concept	Aftertreatment	Boosting/ Air control
Diesel	Peak firing pressure		HD Engine Size ~13l	Mid/High pressure DI SI FL: Ultra Lean PL: Ultra Lean	None	1 or 2 stage /
			MD Engine Size ~8l	Low/Mid pressure DI SI FL: Lean PL: Ultra Lean	SCR Particle Filter	Wastegate VTG
			LCV Engine Size ~2-3l	Mid pressure DI SI FL: stoichiometric + EGR PL:	TWC (+H ₂ SCR)	NA or turbo charged
Gasoline	Temperature		PC Engine Size ~2l	Ultra Lean	Particle Filter	Throttle valve Valve timing
			REX Engine Size ~1l	Low pressure PFI/DI SI FL: stoichiometric (+EGR) PL: stoichiometric	TWC Particle Filter	

Low pressure < 30 bar, Mid pressure 40 – 60 bar, High pressure > 200 bar

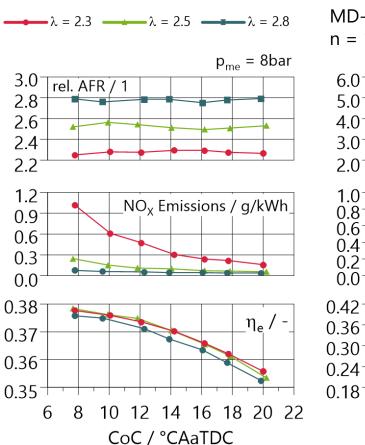
| 3

For MD and HD vehicle class low/mid pressure in combination with lean full load and ultra lean part load operation seems most favorable

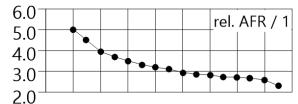
HYDROGEN COMBUSTION ENGINES CAN BE EITHER WAY BASED ON DIESEL AND GASOLINE ENGINES

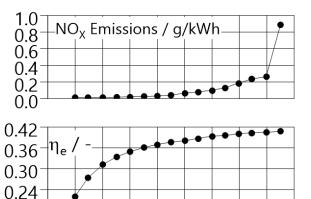
Base engine		Vehicle class	Engine size	Combustion concept	Aftertreatment	Boosting/ Air control
Diesel	Peak firing pressure		HD Engine Size ~13l	Mid/High pressure DI SI FL: Ultra Lean PL: Ultra Lean		1 or 2 stage /
			MD Engine Size ~8l	Low/Mid pressure DI SI FL: Lean PL: Ultra Lean	SCR Particle Filter	Wastegate VTG
Gasoline	Temperature		LCV Engine Size ~2-3l	Mid pressure DI SI FL: stoichiometric + EGR PL: Ultra Lean	TWC (+H ₂ SCR) Particle Filter	NA or turbo charged Throttle valve Valve timing
			PC Engine Size ~2l			
			REX Engine Size ~1l	Low pressure PFI/DI SI FL: stoichiometric (+EGR) PL: stoichiometric	TWC Particle Filter	

Low pressure < 30 bar, Mid pressure 40 – 60 bar, High pressure > 200 bar


© by FEV – all rights reserved. Confidential – no passing on to third parties

14


The multi-cylinder hydrogen commercial engine can be used in multiple operation modes – efficiency optimized as well as emission optimized


FEV

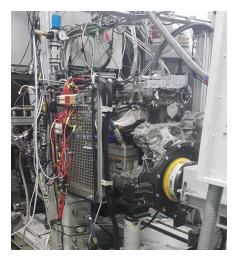
HYDROGEN HD APPLICATION REACHING EFFECTIVE EFFICIENCIES OF 42 %

MD-Engine 7.7l R6, Fuel: H_2 , PFI n = 1400 1/min, 2-Stage TC

2 4

0

6

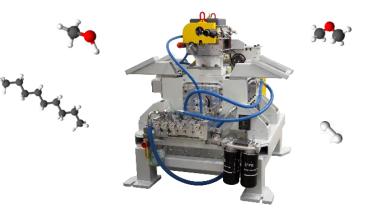

BMEP / bar

8 10 12 14 16 18

- Engineering targets
 - η_e > 42%
- 2-Stage turbocharging

BMEP ~ 20 bar

- lean air fuel ratio even at higher load points
- Steady state trade off
 - EGR vs. lean operation
 - Volumetric efficiency vs. turbulence level (burn duration)
 - NO_x emission level vs.
 exhaust gas temperature (best air fuel ratio)



Leveraging our profound experience in the field of fuels research, we have set up a heavy-duty single cylinder engine suited for alternative fuels

HYDROGEN INVESTIGATION Q4/2020

- Investigation of injector vs. spark plug position
- Optimization of hydrogen nozzle using 3D CFD
- Dedicated piston design for hydrogen combustion

KEY FACTS

- Power unit based on Daimler OM 471
 - Bore: 132 mm, stroke: 156mm, V_H 2.13 dm³
- Beyond state of the art combustion systems
 - Flexible cylinder head design w/ alternative position for injector or spark plug
 - CI / SI + PFI/Direct Injection of alternative liquid or gaseous fuels

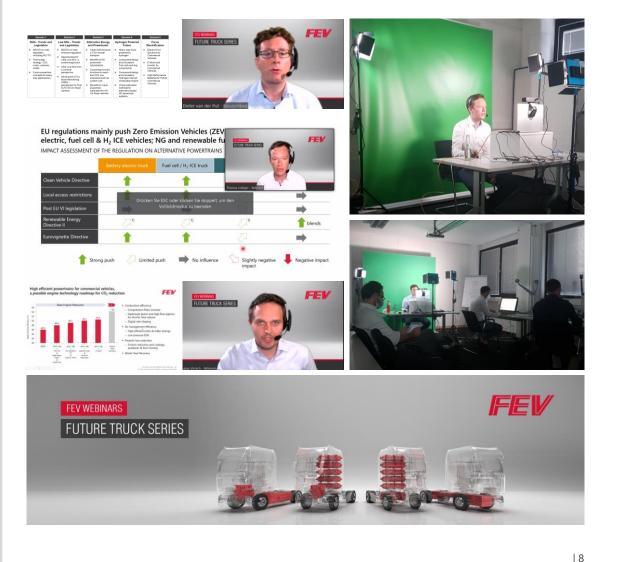
- Boost pressure up to 8 bar at full load
- Peak firing pressure up to 300 bar
- FIE: Fluids up to 3000 bar , digital rate shaping, dual fuel operation
- Infrastructure for gaseous and liquid fuels of all kind
 - **H**₂, DME, methanol, alkanes, OME, CNG

16

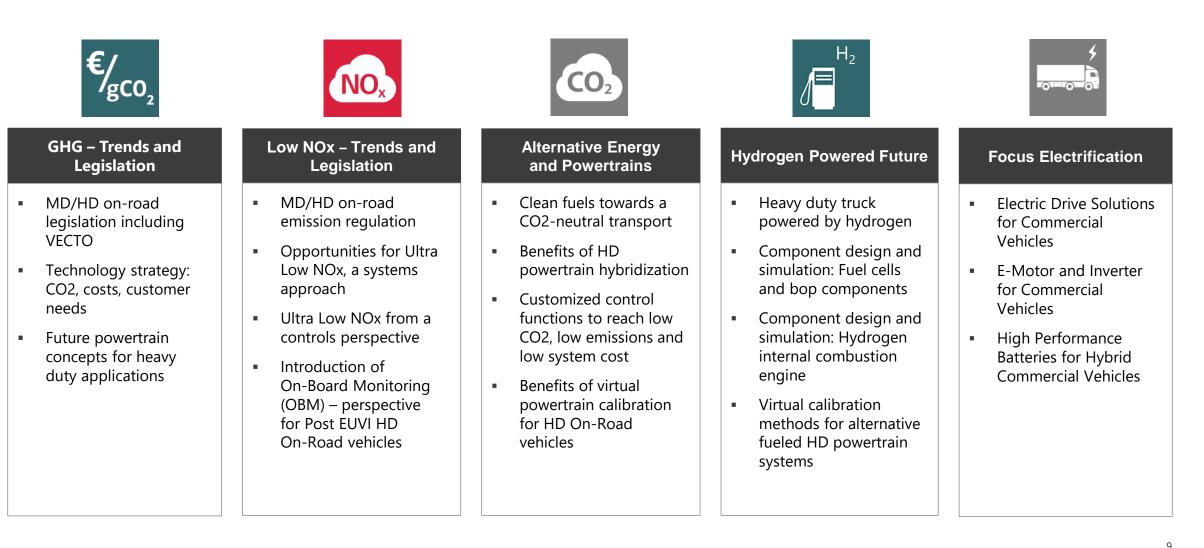
FEV's test benches at the testing facility "European Technical Center" in Aachen are hydrogen ready – 7 test benches available today

FEV

CENTER FOR MOBILE PROPULSION – HYDROGEN READY ICE AND FUEL CELL TEST BENCHES



- Hydrogen specs:
 - 60 bar H₂ pressure upstream ICE/FC
 - 35 kg/h max. H₂ fuel flow
 - H_2 quality range from 3.0 ... 8.0
- Bench features:
 - Full transient operation (WLTP, WHTC, WHSC, RDE-cycles, etc.)
 - Up to
 - 500 kW FC electrical power
 - 640 kW IC engine power
 - 4500 Nm IC engine torque
 - Flow measurement of H₂ and Air
 - FEV FEVER emission measurement



FEV FUTURE TRUCK SERIES

- Hydrogen Powered Future
 - Heavy duty truck powered by hydrogen
 - Infrastructure / TCO Analysis
 - Component design and simulation Fuel Cells
 - Challenges and solution approaches for fuel cell systems
 - Modelling and development framework for fuel cell vehicles, systems and BOP components
 - Component design and simulation H2 ICE
 - Combustion system layout
 - Turbocharger design
 - Aftertreatment system
 - Control Software
 - Virtual calibration methods for alternative fuels
 - Challenges of alternative powertrain development
 - FEV virtual powertrain development process
 - Virtual calibration

FEV Future Truck Series 2020 – Now available on demand Contact us via chat to get further details

